GrimmSpeed Top Mount Intercooler Raw 2008-2014 WRX
You probably already know that you want an intercooler with maximum cooling and minimum restriction, but when it comes to selecting the right ‘man for the job’, we think it’s important to understand why. As air is pressurized by your turbo, it heats up, not because of the heat of the turbocharger, but because when they’re compressed, the atoms in the air are forced closer together and as a result, move faster and have more energy. That energy manifests itself as heat. The more heat we can remove from the system, the denser the air becomes and that’s what helps eliminate pre-detonation, or ‘knock’, allowing for increased output from your system. Your OEM TMIC does just fine at stock boost under normal use, but as soon as you start putting some real heat into it with higher boost or harder use, it heat-soaks beyond recovery.
QUICK SPECS:
- 17.5in x 8.7in x 3.5in Cross Flow Core - careful balance of high heat transfer and low pressure drop
- Cast Aluminum End Tanks - machined BPV flange for precision fit and perfect seal
- 5-Ply Silicone Couplers - custom molded and reinforced for demanding environments
- Wide-Mouth Splitter - collects air from the entire width of the scoop
- Vibration Isolation Mounting - protect the intercooler system from fatigue due to vibration
- Stainless Steel BPV Studs - avoid the risk of damaging fragile aluminum threads
- Cleaned, Inspected and Sealed Prior to Shipping - prevent motor damage due to foreign matter
There are two primary considerations in the design of an intercooler: maximum heat transfer and minimum pressure drop. Unfortunately, one causes the other, so finding a perfect balance requires a detailed understanding of the intended application, some serious engineering power and the highest quality manufacturing processes. Fitment and quality are also critically important to ensure that the most safety-critical part of your turbo system is up to the task every time your foot hits the floor. We began by laser scanning an OEM TMIC to plot the mounting points and space claim in CAD with pinpoint accuracy. At the same time, we designed a custom bar and plate core with overall dimensions, fin density and fin types that would provide the insane heat transfer area we require with minimal flow restriction. With core size nailed down, we got to work designing end tanks that offered smooth flow, perfect fitment and even distribution of the hot charge air through the core. Countless revisions were tested in flow simulation before we finally found exactly the characteristics that we wanted. From there, 3D printed prototypes were used to confirm fitment and we began work on manufacturing details in preparation for verification testing and production.